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The stress system near a rigid boundary in a suspension of neutrally buoyant spheres 
is considered under the assumption of small Reynolds number. The suspending fluid 
is assumed to be Newtonian and incompressible. An ergodic principle is formulated 
for parallel mean flows, and the bulk stress is expressed as a surface average. Only 
dilute suspensions are considered and particle interactions are neglected. A uniform 
shear flow past a plane wall with a single spherical particle is studied first. A series 
solution is developed and the mean velocity and stress fields are computed for a force- 
free and couple-free sphere and also for spheres with couples applied by external 
means. The translational and angular velocities of the particle and the stress distribu- 
tion on the surface of the particle are calculated. Properties of dilute suspensions of 
spheres are found by appropriate surface averages over the solutions for a single 
particle. The mean stress on a plane parallel to the wall is shown to reduce to the 
Einstein value when the distance from the boundary is sufficiently large. Mean 
velocity profiles of the suspension for Couette flow and Poiseuille flow are developed. 
It is shown that in an average sense particles rotate more slowly than the ambient 
fluid in a region approximately three sphere radii thick adjacent to the plane wall. 
But for the suspension as a whole, an apparent slip velocity always develops in this 
region. This results in an apparent viscosity which is less than the infinite-suspension 
value of Einstein. 

1. Introduction 
The theoretical literature on suspension flows is an extensive body of work dealing 

mainly with bulk properties of suspensions. Starting with Einstein’s (1906) work on a 
dilute suspension of rigid spheres, solutions of the Navier-Stokes equations for the 
flow due to the presence of one or more particles have been used to derive the relation 
of the bulk or mean stress in a suspension to the mean velocity gradient. Recent 
studies of general suspension properties have been given by Batchelor (1970, 1973), 
Cox & Brenner (1971) and Brenner (1972a, 6).  Further developments have included 
the study of more concentrated suspensions (Batchelor & Green 1972), deformable 
and non-spherical particles (Roscoe 1967; Batchelor 1971 ; Hinch 1972; Brenner 19726) 
and the effects of Brownian motion (Brenner 1 9 7 2 ~ ;  Leal & Hinch 1972; Hinch & 
Leal 1972; Brenner & Weissman 1972). In  most of these developments, the suspension 
has been assumed to be dilute and the scale of the macroscopic flow 60 be large com- 
pared with the particle spacing. Specifically, let a represent a typical dimension of the 
particle, let 1 be the average distance between particles and let R, characterize the 
scale of gradients of the bulk quantities (including concentration) or the typical 
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length scale of the boundaries of the flow (e.g. the tube radius). Then it is usually 
assumed that 

alR, < all < 1. (1.1) 
In the presence of a boundary, the bulk properties of the suspension are not applic- 

able in a thin layer near the boundary, of the order of a few particle radii in thickness. 
The aim of the present paper is to examine the structure of this wall layer. Only dilute 
suspensions are considered and the inequalities (1.1) are assumed to hold for the 
suspension as a whole excluding the wall layer. Within the wall layer, the gradients 
of the mean velocity and particle concentration vary on a scale comparable to the 
particle size. Consequently, although ensemble averages are well defined in the wall 
region, an ergodic principle equating volume averages to ensemble averages is no 
longer valid. In  the present study ensemble averages in the wall region are equated 
to areal averages over surfaces parallel to the wall. The basic assumption made is that 
there exist surfaces, parallel to the wall, over which the dependent flow variables are 
statistically uniform and have average values which are functions only of the distance 
from the wall. This rationale is elaborated further in the next section. 

The problem of wall effects in suspension rheology has a considerable history, but 
most theoretical treatments which consider more than one particle at a time are 
based on approximate models. For example, in regard to flow of suspensions through 
circular tubes, the flow is typically divided into a wall layer assumed to contain 
suspending fluid only and a core region with uniform bulk suspension properties 
(Maude & Whitmore 1956; Whitmore 1959; Maude 1967). This model can reproduce 
experimental data on the apparent viscosity of the suspension by suitable adjustment 
of the wall-layer thickness. But the velocity distribution predicted in the wall region 
cannot be accurate since particles may intrude into it. Further, the motions of the 
particles themselves are not accurately described. 

Cox & Brenner (1971) have considered the wall effects starting from basic solutions 
for a single particle, but have truncated series in powers of all. The present paper 
supplies detailed information supporting their conclusion that the wall layer will 
generally result in an apparent slip of the bulk suspension relative to the wall. 

The study of the flow of a suspension past a rigid wall may be posed as two separate 
problems which ideally should be solved sequentially. The f i s t  is (a )  given some 
initial distribution of particles and appropriate boundary conditions far from the wall, 
find the velocity and stress fields. The second is (b)  starting from the given particle 
distribution (a)  find the time history of the subsequent particle distribution. In the 
present paper only problem (a)  is addressed. In  principle, if sufficient cases (a) are 
solved, integration over the velocity fields may be used to solve ( b ) .  In  the present 
paper, problem (b)  is not solved because it requires a study of collisions of particles 
near a wall, which have been neglected. Such interactions of particles near the wall 
are important, to ( b )  but not to (a )  assuming that only a small percentage of the particles 
are involved in collisions at a given time when the particle concentration is small. 

One purpose of the present study is to provide a basis for the evaluation of con- 
tinuum theories which purport to represent a suspension both in regard to its mean 
velocity distribution and the particle rotations, such as microstructure theories (see 
reviews by Ariman, Turk & Sylvester 1973, 1974; Cowin 1974). In  these theories the 
wall layer is hopefully reproduced in considerable detail, but appropriate boundary 
conditions are still problematical. 
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The present study employs integration over solutions for a single sphere in a shear 
flow past a plane rigid wall. It may be shown that this is a correct procedure to order 
c, where c is the volumetric concentration (Tozeren 1974). Various problems for 
single spheres have previously been studied both theoretically and experimentally. 
Solutions for a rotating sphere and for a translating sphere in a viscous fluid near a 
plane wall were given by Dean & O’Neill (1963) and O’Neill (1964) respectively. The 
translational and angular velocities of a neutrally buoyant sphere near a plane wall 
were derived by Goldman, Cox & Brenner (1967). These solutions are extended and 
incorporated below. 

2. Balance laws governing suspensions 
A suspension is regarded as a system which is determinate only in a statistical 

sense. It is expected that the exact location of the particles will be different for different 
realizations of a suspension under the same macroscopic conditions, i.e. with the same 
shape and motion of the boundaries of the suspension. However, as shown by Batchelor 
(1970), taking ensemble averages of the equations of continuity and motion yields 
the governing equations for the mean flow: 

a q l a x ,  = o 
and 

where Zij  is the bulk stress, defined as 

Zi j+a i i -p(u , -q) (Uj -q) .  (2.3) 

In  these equations ui is the velocity in any one realization, U, is the ensemble average 
of u,, aij and f, are the stress tensor and body force in any realization and an overbar 
indicates an ensemble average. Since only slow viscous flow of the suspension will be 
considered, the inertial terms p(ui - U,) (ui - U;.) in (2.3) will be neglected. 

The ensemble average of any quantity is assumed, as in Batchelor (1970), to be 
equal to the average of the same quantity in any particular realization over any line, 
surface or volume with respect to which this quantity is statistically stationary. Far 
from rigid boundaries, volume averages are most often used. 

In  the wall region, gradients normal to the wall are of the order of the particle size 
and ensemble averages cannot be replaced by volume averages. However, where the 
flow in the wall layer is essentially parallel to the wall and gradients along the wall are 
small or zero, we may expect that there exist surfaces parallel to the wall, with 
dimensions large compared with 1, over which the suspension properties are statistic- 
ally uniform. Under these conditions, averages of the flow properties over these 
surfaces will be equal to the ensemble averages. Such averages will be functions of 
the distance, say x2,  from the wall. 

For example, the particle concentration c is defined in terms of ensemble averages 
at any point (x,t) as the ratio of the number of realizations in which this point is 
occupied by a solid particle to the total number of realizations. The equivalent areal 
average is 

C ( X &  = A*/A, 
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FIGWFZE 1. Schematic representation of a suspension. Areal averages 
are taken over the surface A for parallel flows. 

where A* is the area of all the particles cut by the surface and A is the total area of 
the surface, i.e. 

where ACk) is the area of intersection of the lcth particle with the surface x2 = constant 
and R is the total number of particles intersecting the surface (see figure 1).  

Assuming the rigid boundary to be x2 = 0 and the mean velocity to be in the x1 
direction, the component of the bulk stress of interest is Z12. Expressed as an areal 
average it is 

where el, is the instantaneous strain-rate component in any realization and cr12 is the 
stress component within the solid particles. For uniform particles, the stress and 
strain fields within the particles may be taken to be the limiting values for elastic 
spheres as the elastic moduli of the spheres approach infinity. (For non-uniform or 
hollow rigid spheres it may be shown that the motion of the particles and fluid are the 
same as for uniform rigid spheres provided the centre of mass is at  the centre of each 
sphere.) Since the strain rate is identically zero within the rigid particles, (2 .4 )  may be 
written as 

(2 .5)  

where Eir is the bulk strain-rate tensor &(i?.& + q,,). The last term in (2.5) is called the 
particle stress Zg). Since the particles in the suspension are assumed to be free of body 
forces, Zit) can be computed from the stresses on the surface of the particle, i.e. 
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where SCk) denotes the portion of the surface of the kth particle that remains above 
the surface A as shown in figure 1. The last term in (2.6) avoids the need to consider 
the internal stress distribution in the particles any further. 

3. Slow viscous shear flow containing a sphere near a plane wall 
Consider steady slow viscous motion of an incompressible liquid which is bounded 

by an infinite plane, has a simple shearing motion and contains a solid force-free 
sphere at an arbitrary distance from the plane wall. The equations governing the 
motion of the fluid are 

aplaxi = p a2uipx;, (3.1) 

auilaxi = 0, (3.2) 

wherep is the fluid pressure andp is the viscosity of the fluid. Let x, = 0 be the bounding 
plane and assume that the fluid motion is in the x1 direction. The co-ordinates xi, 
from here on, are made dimensionless by the sphere radius a. The centre of the sphere 
is located at  (0, d/a,  0). 

When the fluid is at rest at infinity, solutions for the motion of the fluid when the 
sphere either translates parallel to the wall or rotates about an axis parallel to x3 were 
obtained by O’Neill(l964) and Dean & O’Neill(l963) respectively. 

For the problem considered here it is convenient to superpose three solutions. Let 
uT be the velocity field of the fluid when the sphere translates with unit velocity and 
let u, denote the velocity field when the sphere rotates with unit angular velocity. 
Further, let u, be the solution when the sphere is fixed in a fluid whose motion in the 
absence of the sphere would be the simple shear flow at a shear rate S.  Then the 
solution of the proposed problem of a force-free sphere may be written a~ 

(3.3) 

where U and s2 are the translational and rotational velocities of the sphere, which are 
to be determined by setting the resultant force acting on the sphere to zero and equating 
the sum of the external couple and the couple due to the fluid to zero. 

It was shown by Goldman et al. (1967) that the resultant force and couple acting 
on the sphere for the solution us can be obtained, by a suitable quadrature scheme, 
from the corresponding quantities when the sphere either translates or rotates uni- 
formly in a fluid at  rest. While this allows computation of U and Q it does not yield 
the complete velocity and stress fields. Hence the detailed solution us is calculated 
by a method of separation of variables similar to that of Dean & O’Neill(l963). 

A solution for the velocity field us and pressurep in cylindrical co-ordinates (ar, 8, az) 
may be developed in the form 

u = uu, + Qu, + us, 

= psQl cos e, (3.4) 

= ( r ~ ~  +,quo + u,) + 2 4  cos e, (3.5) 

where Q1, U,, U, and w1 are functions of r and z only. The bounding plane is z = 0 and 
the z axis is chosen to pass through the centre of the sphere. 
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It is convenient to introduce bispherical co-ordinates (6, q )  defined by 

The constant k is determined by choosing the plane z = 0 to be E = 0 and the surface 
of the sphere to be 5 = a > 0, so that 

1 = kcosecha, dla = kcotha. (3.9) 

The equations for wl, Q1, U, and U2 were shown by Jeffery (1915) to be of the form 

03 

w1 = (coshE-ji)*sinq x [Ansinh(n++)5]PA(ji), (3.10) 
n= 1 

m 

Q1 = (cosht-ji)*sinq 2 [B,cosh(n+i)E+C,sinh(n++)E]PA(ji), (3.11) 
n= 1 

m 

(3.12) 

m 

U2 = (cosh6-ji)*sinaq x [Fncosh(n+&)6+Gnsinh(n++)flPi@), (3.13) 
n=2 

where ji denotes cos q and Pn(ji) is the Legendre polynomial of order n. The primes 
indicate differentiations with respect to ji. 

The coefficients A,, B,, C,, On, En, Fn and Gn are determined by boundary con- 
ditions and the equation of cont,inuity. The velocity must be zero on the bounding 
plane z = 0 and from the equation of continuity it follows that awl& = 0 also on 
z = 0. These conditions require that (Dean & O'Neill 1963) 

Bn = (n-1)A,-1-(2n+1)An+(n+2)An+, (n 2 I), (3.14) 

On = - i ( n  - 1) nA,-, + +(n + 1) (n + 2) An+1 (3.15) 

Fn = $(An-, -An+J (n 2 2) .  (3.16) 

Since the sphere is fixed in the shear flow, the velocity must be zero on the surface 
of the sphere and must approach the undisturbed shear velocity z --f ao. These 
conditions require (Tozeren 1974) 

(n 2 0), 

(3.17) 

En = - 2% cosech [(n + 4) a] (2n + 1) exp [ - (n + +) a] 

where 

(3.19) 

k, = (n+&)coth[(n++)a]-cotha (n 2 0). (3.20) 



Stress in a swpens ion near rigid boundaries 295 

Now the equation of continuity can be used to derive a system of equations for the 
constants An: 

= 24 cosech [ (n  - 4) a] ( 2 n  - 1 )  exp [ - (n - 4) a] - 29 cosech [ (n  + 4) a] ( 2 n  + 1) 

x exp[ - (n+ 4) a] + 24 cosech [ (n +#)a] ( 2 n +  3 )  exp [ - (n+ #)a]. (3.21) 

The first r equations in the set (3 .21)  contain the r + 1 constants A,, A,, . . ., A,+1, and 
determine A,, ..., A, if A,+, is assumed to be zero. The equations are solved on this 
assumption for increasing r until convergence to  O-OOlA, is obtained. The number r 
of equations required for convergence of the solution increases as the value of a 
decreases. 

For purposes of calculating the particle stress, it  is necessary to compute the total 
force acting on the part Sk) of the surface of the sphere remaining above an arbitrary 
plane z = constant. Let this force be T, for a fixed sphere in a shear flow S .  It is 
found that 

1 2 ( ~ - d ) ~ - 2 a ~ ] ,  
+ F  a2 

where 

(3 .22)  

(3.23) 

This expression for the force acting on the part S ( k )  of the surface of the sphere is 
similar to those obtained for a complete sphere rotating (Dean & O’Neill 1963) and 
translating (O’Neill 1964). For these cases, the same series expansions may be used, 
subject to the appropriate boundary conditions. To modify (3 .23)  to apply to the 
case of a sphere translating in fluid at rest at infinity, the k2S in front of the square 
bracket is replaced by k U ,  and the last term in the square bracket is dropped. In the 
case of a sphere rotating in a fluid at rest, the constant k2S is replaced by k2Q and the 
last term in the square bracket is divided by - 2. 

Returning to the complete problem of a force-free sphere subject to an external 
couple M, in a semi-infinite shear flow, the translational and angular velocities of the 
sphere are found by setting the resultant force equal to zero and the resultant couple 
equal to - M3, i.e. 

Fs+E!U+k” ,Q = O ,  (3.24) 

Ms + M r  U +M’ Q +M3 = 0, (3 .25)  

where M,, MT and MR are the resultant couples in each solution. Equation (3.24) may 
be reduced to 

(3.26) m 4) U “  x x E‘,S,+n x E‘?+% 2 @!) = 0,  
n= 0 n= 0 n= 0 
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FIGURE 2. 
(figure 1). 
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Each curve is for a sphere with centre at a different distance xg from the boundary. 
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where the superscripts S, R and T identify the coefficients for the solutions us, uR and 
uT. Equation (3.25) for the total couple acting on the force-free sphere similarly reduces 
to 

m U M3 = 287rp - a2 sinh2 a 2 [2n(n + 1) AF)] 
k n= 0 

m m 

n=O n= 0 
+ 2*7rpQu3 sinh3 a [2n(n + 1) AP)] + 2brpSa3 sinh3a 2 [2n(n + 1) 43. 

(3.27) 

The coefficients A 9  and Ek)  are the An and En determined by (3.21) and (3.18) for a 
fixed sphere in a shear flow as discussed above. The coefficients A?, E’,R), A:) and ELT) 
for translation and rotation of the sphere may be found from equations given by 
Dean t O’Neill(l963) and O’Neill(l964) or Tozeren (1974). 
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are computed fist and 
they determine E'!m, E'?) and E',I". Next, U/kS and B/S are obtained by solving (3.24) 
and (3.25). Finally, the force T1(x2, 4) acting on a segment of the sphere is computed 
by evaluating (3.22) numerically (g is the sphere centre, i.e. xg = d/a). 

Values of Tl/pSa2 for several values of g are plotted as a function of x2 - xg + 1 in 
figure 2 for the case where the couple M, is zero. It is seen that when 4 is large Fl 
is symmetric with respect to x2-G as expected. As the sphere approaches the wall, 
the distribution of stress becomes increasingly asymmetric. Ultimately, a point force 
develops at the point of contact of the sphere and the wall in the limit zg +- 1 (O'Neill 
1968). 

The series solutions outlined above converge poorly in the numerical sense as the 
ratio of the gap width 6 iio the sphere radius tends to zero. They are, in fact, com- 
putationally useless for &/a less than about 0.01. Asymptotic methods in this range 
were developed by Goldman et al. (1967) and their solutions have been adapted to 
cover this range approximately (see Tozeren 1974). Fortunately, very few spheres 
fall into this range and their influence is not important to the final results. 

In  computations for particular cases, the A F ,  A 9  and 

4. Particle stress and effective viscosity 
To compute the particle stress [see (2.6)] using the solutions for a single particle, 

it  is necessary to integrate over all the intersections of particles at various distances 
from the wall with the plane x, = constant. The force for any one particle intersection 
is Tl(x,, g, E,,,M,), where x2 is the location of the section, @ is the centre of the sphere, 
El, is the mean strain rate and M, is the external couple applied to the particle. Let 
h(xg) be the average number density per unit area of the particles whose centres are 
at xg. Then (2.6) is equivalent to 

where the lower limit of integration xg is given by 

1 if x2 < 2, 
x, - 1 otherwise. 

xg = 

The number density h(xg) is such that the number of sphere centres in a volume 
extending from x2 to x2 +Ax, with unit cross-sectional area parallel to x2 = constant is 

It is easy to see from the solutions given above that is linear in E12,p and co, 
where co is the uniform concentration far from the wall. It is convenient to extract 
these from (4.1) and define a functionf(x,, h, m) such that 

%' = 2pC0E1zf(x,, h, m), (4.5) 
where m = M3/pE12G and V, is the volume of one particle. At the wall f = 0 because 
the area A* over which Z@ is integrated approaches zero. The functionfis known far 
from the wall from the previous literature for an infinite suspension: 

limf(x2) =f* = 2.5 +M3/4pE12Q, 
X,+ 00 
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where the term 2.5 is due to Einstein (1 906) and the second term was given by Brenner 
(19724 for infinite shear flow. In  terms of the particle rotation (4.6) becomes 

f" = 2-5 + (1-5S2"/El2+ 14) ,  (4.7) 

where S2a is the mean particle rotation far from the wall. The asymptotic values off 
provide a check on the computations. Agreement with the asymptotic values wa5 
found to be within 1 yo for all of the cases computed. (See the next section.) 

The function f ( x , )  may be interpreted as the inhinsic increase in apparent viscosity 
due to the presence of the particles. From (2.5) and ( 4 4 ,  the total bulk stress is 

El2 = 2PE12[1+ cof(x2)l. (4.8) 

In this case it is convenient to define the effective viscosity cc, by 

Pe. = Z12/2E12 = P[1+ c0f(4)1. (4.9) 

Equation (4.9) may be used to compute the mean velocity profile by solving for 
El, and integrating. To first order in co, the result is 

u1 = U S  x2+f"ocOx2-cO f ( x , ) d x ,  1, (4.10) 

where co and S are the concentration and mean velocity gradient a5 x2 --t 00. In  the shear 
flows considered here, the stress component X12 is constant and is greater than the 
stress which would occur in the suspending fluid alone at a shear rate S. At the wall 
the concentration c goes to zero and the full stress is carried by the fluid. This implies 
that, for the suspension, the strain rate El, at the wall must be greater than its value 
at infinity ( E z  = is). This effect ensures that the velocity near the wall tends to 
increase more rapidly than in a uniform suspension and gives rise to a positive apparent 
slip velocity. 

Next consider flow of a dilute suspension between two parallel plates a distance b 
apart due to the motion of the upper plate with velocity Uo with the x1 direction; 
x2 = 0 denotes the lower plate and x2 = b/a is the upper plate. Assuming that (4.8) 
is valid in the vicinity of each plate with E12 equal to a constant, integration with 
respect to 2, yields the first approximation in co: 

( fo" ) 

(4.11) 

where 
if xz < b/2a, 

fl(xz) = (;{$ - x 2 )  if x, > b/2a. 

For this finite Couette flow it is also useful to introduce an apparent viscosity pa 
based only on macroscopic or global quantities. It is defined by 

Pa = bT'/Uo, (4.12) 

where To = E12. Using (4.8) and (4.11) in (4.12) gives 

(4.13) 
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In  the case of flow in a circular pipe, it  is assumed that 

UB = V, = 0,  V ,  = f (R) ,  (4.14) 

8pla.z = G = constant, (4.16) 

where (R, 8, z )  are cylindrical co-ordinates. For pipe flow, an ensemble average of any 
quantity at  a position x is equal to the average over the cylindrical surface that passes 
through x. But if the particle radius to pipe radius ratio A = a/R, is sufficiently small 
the boundary surface can be approximated by a plane wall. It is shown by Bungay & 
Brenner (1969, 1973) that, when the pipe wall is replaced by a plane surface, the 
results are correct up to terms of f i s t  order in A. Hence, for small A, the particle stress 
component Z- is assumed to be to a first approximation . 

(4.16) 

where R, is the radius of the pipe and x2 is replaced by (R, - R)/a in the expression for 
f ( x 2 ) .  E,, is the mean rate-of-strain component. Substituting (4.14)-(4.16) into the 
equations of motion and neglecting the higher-order terms in co, the velocity profile 
is found to be 

(4.17) 
G 
4P 

V,  = - (Rg-R2)-~"- 

where R' is defined as R,- R. The apparent viscosity for pipe flow is defined as 

(4.18) 

where ap/& is the pressure gradient in the z direction and Q is the discharge. Equation 
(4.18) is Poiseuille's law for a Newtonian fluid solved for the viscosity. If the discharge 
Q is calculat,ed from (4.17), neglecting the higher terms in co, (4.18) reduces to 

(4.19) 

Equation (4.19) shows that the apparent viscosity decreases with decreasing Ro/a as 
may be seen in the numerical examples in the next section. 

5. Numerical examples 
The expressions for the particle stress and the apparent viscosities derived in the 

previous section are general in that they apply to any particle distribution h(xg). 
This distribution is the result of entrance conditions, particle interactions and possibly 
Brownian motion and particle migration. This problem is not solved here, but to 
illustrate the possible results and for comparison with experimental data, several 
different distributions will be considered. These are shown in figure 3 ( B ) .  In  all cases, 
h = 0 for xg < 1,  and far from the rigid boundary the concentration is assumed to 
be uniform and equal to c,. In  between the distributions assumed are as follows. 

Case (a): h = 3co/4na2 for all xg > 1.  (5.1 a) 
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FIGURE 3. ( A )  Concentration c as 8 function of z2 for the mean particle distributions h(s:) shown 

in ( B ) .  (23) The distributions h(zg) refer to the number density of particle centres. 

Case (6): 

Case (c): 

Case ( d ) :  

(5.lb) 

( 5 . 1 ~ )  

(5 . ld)  

Case (a)  corresponds to a uniform distribution of centres outside the wall exclusion 
region. 

The concentration on any plane xz is defined by (2.4) and is related to the distribution 
of centres h(xi) by 

c = JZ;+' a2h(g)n[l - ( g - x 2 ) 2 ] d x i ,  (5 .2)  

where xi is given by (4.2) and (4.3). The particle concentrations that result from the 
distributions h(xg) in figure 3 ( B )  are shown in figure 3 ( A ) .  

The function f (xz) defined in (4.5) was computed for force-free spheres for three 
values of the moment applied to each particle. The moments were chosen to give the 
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FIGURE 4. Increase in effective viscosity due to particle stress. ( A )  Suspension of neutrally buoyant 
particles (L2 = - &S' as x, +. 03). Curves (Aa-d) correspond to the concentration curves (a)-(d) 
in figure 3. (B) Suspension of particles with external couple (0 = 0 as x, +a). (C)  Suspension 
of particles with external couple (L2 = 0.9s as x, -+ 03). 

cases Qm = - $S, 0 and 0.9s. The first of these corresponds to zero applied moment. 
The integral in (4.1) was evaluated numerically using values of TI at closely spaced 
points. The results are shown in figure 4. For the case of force-free and couple-free 
particles, the dependence of f(xz) on the mean particle distributions h(xg) in figure 3 
is illustrated in figure 4 by curves (a) ,  ( b ) ,  (c) and (d) .  Curves (Aa) ,  (23) and ( C )  are for 
uniform distributions of particle centres and different values of the external moment. 
In all cases, the function f (xz) approaches its asymptotic value within a distance of 
about 4a from the wall. 

After the intrinsic viscosity functions f (xz) have been computed, the mean velocity 
may be computed using (4.10). The results are shown in figure 5 in terms of the 
difference of the mea.n velocity from a straight line for the same three applied moments 
as before with a. uniform particle distribution (5.1 a).  The difference velocity shown 
in figure 5 approaches a constant far from the wall for each case. This constant is a 
positive apparent slip velocity of the bulk suspension relative to the wall in all cases. 
Figure 5 relates to the mean velocity of the entire suspension. It was found that the 
mean particle velocity near the boundary is also greater than x,S in all cases, as 
shown in figure 6. The mean particle velocities shown are averages over the inter- 
section A* of a plane parallel to the boundary with the solid particles taking into 
account both the translation and the rotation of the particles. A similar average of 
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I I I I I I .  
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(U,  - Sx,)/aSco 
FIGURE 5. Mean velocity in a suspension in semi-infinite Couette flow. Curves ( A ) ,  (B)  and (C)  
correspond to three different moments applied to the particles giving Rm = - &S, Rm = 0 and 
Ra = 0.98 respectively. The curves show the mean velocity minus the linear term x2S .  
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FIGURE 6. Mean particle velocity for ( A )  a suspension of neutrally buoyant couple-free particles 
(R  = - &S as x2  + co), (B)  a suspension of particles subject to an external couple such that R = 0 
as xa + 03 and ( C )  a suspension of particles subject to an external couple such that R = 0.9s  as 
za + 03. Note that a uniform mean particle distribution is assumed, i.e. (5.1 a). 
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Q /(-fs) 
FIGURE 7. Mean particle rotation. Curves (A) ,  (B)  and (C) correspond to three different moments 

applied to  the part.icles giving RcO = 04S, 0 and - 4s respectively. 
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FIGURE 8. Intrinsic apparent viscosity (pB -,&)/cop for Couette flow of suspensions of force-free 
and couple-free particles. Curves (A)-(D) correspond to particle distribution curves (a)-@) of 
figure 3 Iespectively. 
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the mean particle rotation computed over the same area A* is shown in figure 7. 
Here the retardation due to the boundary is evident. 

It should be noted that the inhomogeneities existing near the walls do not affect 
the bulk rheological properties of the suspension far from the wall, but rather the wall 
layer governs the boundary conditions that are to be imposed on the dependent 
macroscopic variables of the bulk suspension. For specific geometric boundaries, the 
gross results of the interplay of the bulk suspension and the boundary conditions 
imposed by the wall layer may be conveniently summarized in terms of an ‘apparent 
viscosity ’. 

The apparent viscosity for a finite Couette flow between two plates at a distance b 
apart was computed using (4.1 1) (for the same applied moments as before). The results 
for pa as a function of b/2a are shown in figure 8. It can be seen that, owing to the wall 
exclusion effect, the apparent viscosity is noticeably reduced when b/a is less than 40. 
This reduction is relative to the effective viscosity of an infinite fluid with the con- 
centration co which occurs far from the wall. 

Experimentally, wall effects are not detectable in Couette viscometers for dilute 
suspensions of neutrally buoyant spheres (Maude & Whitmore 1956). This has been 
explained on the basis that any exclusion of particles from the wall region must result 
in an increased concentration elsewhere, the average remaining constant. To test 
this empirical suggestion, the mean concentration T corresponding to curves (a)-(&) 
in figure 3 may be computed from 

r = c(x2) dx2 

and the apparent viscosity computed for T from the Einstein formula 

(5.3) 

If the values for ,Ee given by (5.4) are used in place of p, and plotted as in figure 8, the 
resultant curves all agree with the curves shown in figure 8 to within 1 yo except for 
the part of curve ( A )  below b/2a < 20, where the error increases to about 3 yo. This 
shows that the present results agree closely with the experimental observations in 
this regard. 

The present results are in disagreement with one previous theoretical analysis 
(Guth & Simha 1936) which concluded that the apparent viscosity in Couette flow 
should always be greater than (5.4) owing to the presence of the walls (see Happel & 
Brenner 1963, pp. 443-445). This is due to the fact that they assume that the mean 
Couette velocity profile remains linear and do not take into account its modification 
in the wall layer. 

The present results also disagree in a qualitative way with the predictions of mean 
velocity profiles for Couette flow of micropolar fluids, which have sometimes been 
suggested as models of suspensions. For the case of zero external moment, the velocity 
difference shown in figure 5 (curve A )  would be negative for a micropolar fluid (see 
Cowin 1974). For the actual suspension, the velocity difference (figure 5) is always 
positive. This implies that a micropolar fluid may not be a satisfactory model in this 
case. (A more detailed discussion may be found in Tozeren 1974.) 

For the case of a suspension flowing in a circular cylindrical tube, the apparent 
viscosities computed using (4.19) are shown as curves (A)-(D) in figure 8. These 
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FIGURE 9. Intrinsic apparent viscosity (,ua-,u)/cO,u for pipe flow of suspensions of force-free and 
couple-free particles. Curves (A)-@)  correspond to particle distribution curves (a)-(d) of figure 3 
respectively. Curves (A’)-(D’), corresponding to curves (a)-(d) of figure 2, were obtained using 
(5.3). 

results are generally lower than those for Couette flow. It is well known experimentally 
that the apparent viscosity of suspensions decreases with decreasing radius of the tube 
if the particle size is held fixed (Maude & Whitmore 1956; Whitmore 1959; Seshadri 
& Sutera 1970). This trend is found also in the flow of blood in capillaries, where it is 
known as the Fahraeus-Lindquist effect (see Barbee & Cokelet 1971). In  all cases it is 
associated wit.h axial concentration of the suspended particles, due to wall exclusion 
and radial migration. In the case of blood flow Barbee & Cokelet (1971) show that 
the experimental results correspond to the apparent viscosity of a uniform particle 
concentration equal to the spatial average of the concentration in the capillary. For 
the case of dilute suspensions of rigid spheres treated here, this rule would give again 
the Einstein infinite-suspension result using the mean concentration C in place of c,,. 
The apparent viscosity would be estimated as 

Curves (A’)-(D’) in figure 9 show results computed using (5 .5 )  and the assumed 
concentration curves (a)-(d) in figure 3. These results show that there is a further 
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reduction in the apparent viscosity computed by the full theory presented above 
(curves A-D) as compared with the results obtained using (5.5) (curves A'-D'). This 
may be attributed to the enhanced role of the reduced particle concentration near the 
wall, where the velocity gradient is greatest and hence amplifies the effect of this 
region. 

The present results (figure 9, curves A' and B') bridge the experimental data and 
semi-empirical theory given by Maude (1967) for moderately dilute suspensions of 
neutrally buoyant spheres (0.07 < c0 < 0.20). This implies that for tube flow the 
resultant concentration profile near the wall lies between curves (a) and (b )  in figure 
3 (B). Maude (1967) uses curve (a)  of figure 3 (B) but makes the rough approximation 
for the wall layer that it consists of only suspending fluid for 0 c x2 < 1. 

The results of the present analysis can be closely approximated for the case of a 
uniform distribution of sphere centres (curve (a )  in figure 3B) by using a slip velocity 
at the wall as a boundary condition instead of the usual zero velocity. Using the 
asymptotes shown in figure 5, the slip velocity a t  the wall should be 

u, = aSOc0[3 +3.3Q/S+O*412 (fi/b'O)z], ( 5 6 )  

where So is the velocity gradient in the bulk flow approaching the wall but outside the 
wall layer, and fils is the constant ratio of the particle angular velocity to the mean 
velocity gradient far from the wall determined by (4.6) and (4.7). Using (6.6) as a 
boundary condition and assuming a uniform apparent viscosity equal to its value 
far from the wall will give good approximation of the mean velocity profile far from the 
wall and down to within about one particle diameter from the wall. 

The authors take pleasure in thanking Professor Shu Chien and Professor Maciej 
Bieniek for helpful discussions of various parts of the subject. The research was made 
possible by support from the National Heart and Lung Institute through Grants 
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